The "LMRC" Linear Motor Reciprocating Compressor

Brief Overview and Development Progress Report

A collaborative effort by ACI Services Inc., Libertine FPE Ltd., Southwest Research Institute, and the U.S. Department of Energy

Presented by W. Norm Shade, PE

GMRC Gas Machinery *Virtual* Conference – October 12, 2020

- > SwRI / ACI project to develop a reliable, efficient, cost-effective compressor for hydrogen vehicle fueling
- > Compressing 10 kg/hr (103 MSCFD) of hydrogen from 20 to 875 bar (290 to 12,689 psi) in three stages

- ▶ Phase 1 designed all 3 stages; Phase 2 built & tested 1st stage
- > 3.00" stroke; 2.557/1.537/0.852" bores; 330 rpm; targeted 95% adiabatic efficiency per stage
- > 2015 GMC Paper: Designing a Linear Motor Recip Compressor (LMRC) for 12,700 psi Discharge

- ▶ Phase 1 designed all 3 stages; Phase 2 built & tested 1st stage
- Double-ended compressor design
- **→** High-strength Neodynium (NdFe₁₄B) permanent magnets
- Electrical coils outside casing

> Original Stage 1 prototype – stator coils wound on central casing (right) and assembled in cooling jacket (left)

> Original Stage 1 prototype – magnet assembly (left); zirconia pistons (right); compressor cylinder & head (center)

> Original Stage 1 prototype - control scheme & valve optimization for high efficiency (based on simulations)

Original Stage 1 prototype – testing results at SwRI

Successes:

- Operated on helium and hydrogen
- Mechanically sound
- Minimal vibration
- No leakage to atmosphere
- Internal seals performed as intended
- Proof of concept
- Significant learning!

Disappointments:

- Testing limited by control system, position sensor & instrumentation problems
- Magnets may have deteriorated with time in hydrogen environment
- Coils located outside casing caused low motor efficiency
- Learned that different motor & control designs necessary to achieve goals

Recent Project History

Phase 3 (2019 – 2020)

- > New LMRC Design
 - Single-ended design employing proven Libertine technology
 - Retained one compressor end of original LMRC
 - Completely new motor section with coils inside casing
 - Novel stator housing cooling chambers

> New LMRC Design

➤ New Stage 1 prototype – testing results at SwRI

New Stage 1 prototype – testing results at SwRI

Successes:

- Operated on helium to 750 psig discharge (temperature limited)
- Operated on hydrogen to 3.18 max PR; 686 psig max discharge
- 84% isentropic efficiency at 2.21 PR with non-optimized profile
- Internal seals performed as intended
- Precision control demonstrated
- Demonstrated ability to idealize piston motion profiles
- Coils located inside casing improved motor efficiency
- Minimal vibration
- Minimal to zero leakage to atmosphere
- Proof of concept

New Stage 1 prototype – testing results at SwRI

Disappointments:

- Suction valve assembly misalignment initially caused poppet leakage (design change defined)
- Longer than desired dwell times at ends of piston stroke (additional control tuning is needed with extended testing)
- Nickel plating problems led to hydrogen attack of multiple magnets (suspended testing before optimization finished)

Next Phase (2020 –)

- > Design Enhancements
 - Double-ended compressor (increased output)
 - Slotted stator motor (increased efficiency)
 - 3x speed and 2x stroke uprate (increased output)
 - Integrated modular packages for applications needing
 - o higher flow,
 - higher pressure ratio, or
 - **both**

Next Phase (2020 -)

- > Potential Applications
 - Hermetically sealed (zero emission) compression
 - Vapor recovery
 - Toxic gases
 - Any other gases that are compatible with magnet materials
 - Hydrogen (after process quality improvements on Nickel barrier plating)
- > SwRI, ACI and Libertine want to continue developing this technology for commercial applications
 - But.....need additional funding for continuing the development
 - Project proposals currently before DOE and a major end user for hydrogen fueling applications
 - Welcome discussion with interested parties for hydrogen or other compression applications

Visit <u>www.aciservices.com</u> for a copy of this presentation

Or contact:

W. Norm Shade, PE ACI Services Inc.

nshade@aciservicesinc.com

713-206-9651

Eugene L. (Buddy) Broerman Southwest Research Institute <u>eugene.broerman@swri.org</u> 210-522-2555

Sam Cockerill
Libertine LPE
sam.cockerill@libertine.co.uk
+44 7740 488130

