Gas Machinery Conference 2009 Short Course Performance Control of Reciprocating Compressors: Devices for Managing Load and Flow

W. NORM SHADE

CHAD D. BRAHLER

PRESIDENT

V.P. MARKETING AND SALES

DWAYNE A. HICKMAN

DIRECTOR, SOFTWARE DEVELOPMENT

ACI Services, Inc. Cambridge, Ohio USA 740.435.0240 www.ACIServicesInc.com

ACI Services, Inc.

Provide course attendees with:

- A fundamental review and understanding of the many types of reciprocating compressor unloading and capacity control devices,
- Useful knowledge for evaluating and comparing individual unloading and control devices,
- Tools for identifying the best approach and devices for optimizing current, reapplied and new compressor performance relative to unique needs and budgets,
- An objective method for selecting and economically justifying optimum control devices.

- **Quick-reference charts**
- □ Pressure-Volume diagrams
- □ Diagrams, schematics and pictures
- □ Relative advantages and disadvantages
- □ Practical applicability
- □ Performance considerations across full operating maps
- □ Installation considerations
- □ Maintenance issues
- Operational limitations
- □ Automation possibilities
- Economic considerations and justification

Indicated Load = Adiabatic Load + Valve Loss

(As Measured via Analyzer)

Total Cylinder Load = Indicated Load + Friction Loss

Indicated Load per End =

Adiabatic + ValveLoss_{Suction} + ValveLoss_{Discharge}

Flow Rate or Capacity

Reciprocating Compressor Fundamentals

Compressor Flow (Capacity)

Reciprocating Compressor Fundamentals

Compressor Flow (Capacity)

Fixed Clearance Volume

 $Flow = f(VE_S)$

$$\mathrm{VE}_{\mathrm{S}}\% \approx 100\% - \mathrm{Clr}\% \left(R^{1/K} - 1 \right)$$

 $Clr\% = \frac{Fixed Volume}{Swept Volume}*100\%$

R is Pressure Ratio

K is a Gas Property

- □ Reduce Load for Easier Startup
- **Gradual Loading After Startup**
- □ Avoid Driver Overload as Conditions Change
- □ Deliver Required Flow Rate
- Maximize Driver Load Utilization and Flow
- Reduce the Number of Shut Downs and Start Ups
- Automate Unit Control
- □ Handle System Upsets without Shut Downs
- Accommodate Wide Range of Conditions (e.g. Storage/Withdrawal)
- System Optimization

- □ Suction Pressure
- □ Suction Temperature
- **Discharge Pressure**
- **Gas Properties**
- **D** Piston Stroke
- □ Speed
- Piston Area (bore size)
- **Cylinder Fixed Clearance Percent**
- □ Valve Size (effective area and resistance to flow)
- □ Number of Cylinder Active Ends (front and rear ends)

☑ Physical Hardware Changes

Manual Control with Manual Actuation

Manual Control with Automated Actuation

Automated Control with Automated Actuation

Examples:

Valve spacers.

Relining cylinders to change bore diameters.

Physical Hardware Changes

☑ Manual Control with Manual Actuation

Manual Control with Automated Actuation

Automated Control with Automated Actuation

Example:

Manual front head variable volume clearance pocket (VVCP).

Physical Hardware Changes

Manual Control with Manual Actuation

- ☑ Manual Control with Automated Actuation
- Automated Control with Automated Actuation

Examples:

Pneumatic, hydraulic and electric actuation devices that are activated with manual valves or switches.

Physical Hardware Changes

Manual Control with Manual Actuation

Manual Control with Automated Actuation

☑ Automated Control with Automated Actuation

Examples:

Pneumatic, hydraulic and electric actuation devices that are controlled and activated by a Control Panel.

Load and Flow Methods & Devices

☑ Variable Speed Control

- □ Engine Speed Governor
- □ Variable Frequency Motor Drive
- □ Torque Controller
- **External Bypass**
 - **Given Startup Bypass**
 - Capacity Control Bypass
- Suction Pressure Control
 - **Pressure Reducing Valve**
- Deactivate Cylinder End
 - Suction Valve Removal
 - □ Valve Unloaders (Plug-Type, Finger-Type, or Radial-Type)
 - Suction Valve Lifting
 - Internal Cylinder Body Bypass
 - Head End Bypass

Load and Flow Methods & Devices

Variable Speed Control

- Engine Speed Governor
- **U** Variable Frequency Motor Drive
- **D** Torque Controller

M External Bypass

- □ Start Up Bypass
- **Capacity Control Bypass**
- Suction Pressure Control
 - **Pressure Reducing Valve**
- Deactivate Cylinder End
 - Suction Valve Removal
 - □ Valve Unloaders (Plug-Type, Finger-Type, or Radial-Type)
 - Suction Valve Lifting
 - Internal Cylinder Body Bypass
 - Head End Bypass

Load and Flow Methods & Devices

- Variable Speed Control
 - **Engine Speed Governor**
 - **U** Variable Frequency Motor Drive
 - **Torque Controller**
- External Bypass
 - □ Startup Bypass
 - Capacity Control Bypass
- ☑ Suction Pressure Control
 - □ Pressure Reducing Valve
- Deactivate Cylinder End
 - **Gamma** Suction Valve Removal
 - □ Valve Unloaders (Plug-Type, Finger-Type, or Radial-Type)
 - Suction Valve Lifting
 - Internal Cylinder Body Bypass
 - Head End Bypass

Load and Flow Methods & Devices

- □ Variable Speed Control
 - Engine Speed Governor
 - Variable Frequency Motor Drive
 - **Torque Controller**
- **External Bypass**
 - **Given Startup Bypass**
 - Capacity Control Bypass
- Suction Pressure Control
 - □ Pressure Reducing Valve

☑ Deactivate Cylinder End

- Suction Valve Removal
- □ Valve Unloaders (Plug-Type, Finger-Type, or Radial-Type)
- Suction Valve Lifting
- Internal Cylinder Body Bypass
- Front Head Bypass

Load and Flow Methods & Devices

- **☑** Displacement Changes
 - □ Changing Bore Diameter or Stroke
- Fixed Clearance Changes
 - Removable Clearance Plugs (Head or Body
 - Clearance Bottles
 - Internal Body Pockets
 - □ Valve Spacers
 - Front Head Spacers
 - Piston Changes
 - Head End Fixed Volume Clearance Pockets
 - Valve Cap Fixed Volume Clearance Pockets
 - **U** Variable Volume Clearance Pockets
 - □ Adjustable Suction Valves
- □ Timed Valve Closing
 - □ Infinite Step Unloaders (e.g. HydroCOM)
- Combinations of the Above

Load and Flow Methods & Devices

Displacement Changes Changing Bore Diameter or Stroke

☑ Fixed Clearance Changes

- **Removable Clearance Plugs (Head or Body)**
- Clearance Bottles
- □ Internal Body Pockets
- □ Valve Spacers
- □ Front Head Spacers
- Piston Changes
- Head End Fixed Volume Clearance Pockets
- □ Valve Cap Fixed Volume Clearance Pockets
- □ Variable Volume Clearance Pockets
- □ Adjustable Suction Valves
- □ Timed Valve Closing

□ Infinite Step Unloaders (e.g. HydroCOM)

Combinations of the Above

Load and Flow Methods & Devices

- Displacement Changes
 - **Changing Bore Diameter or Stroke**
- Fixed Clearance Changes
 - **Removable Clearance Plugs (Head or Body)**
 - **Clearance Bottles**
 - Internal Body Pockets
 - □ Valve Spacers
 - □ Front Head Spacers
 - Piston Changes
 - Head End Fixed Volume Clearance Pockets
 - **U** Valve Cap Fixed Volume Clearance Pockets
 - **U** Variable Volume Clearance Pockets
 - □ Adjustable Suction Valves
- ☑ Timed Valve Closing

□ Infinite Step Unloaders (e.g. HydroCOM)

Combinations of the Above

Load and Flow Methods & Devices

Displacement Changes

Changing Bore Diameter or Stroke

Fixed Clearance Changes

- **Removable Clearance Plugs (Head or Body)**
- **Clearance Bottles**
- Internal Body Pockets
- □ Valve Spacers
- □ Front Head Spacers
- Piston Changes
- Head End Fixed Volume Clearance Pockets
- **U** Valve Cap Fixed Volume Clearance Pockets
- **U** Variable Volume Clearance Pockets
- □ Adjustable Suction Valves
- □ Timed Valve Closing

□ Infinite Step Unloaders (e.g. HydroCOM)

☑ Combinations of the Above

The Pressure-Volume Diagram

□ INSTALLED COST

What is the relative initial capital investment cost of the device?

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE

What is the relative effect of the device on isentropic efficiency during use?

Greatly improves		
Moderately improves		
Little or no effect	000 00	
Moderately reduces	00 000	
Greatly reduces	00000	

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE

How easily is the device applied to, and installed on,

existing equipment?

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE

How easy is the device to use?

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE

How easily can the device be automated?

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE

Variable Speed Control

☑ Variable Speed Control

- Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- Displacement Changes
- □ Added Fixed Clearance
- Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- □ Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- Adjustment of the prime mover operating speed
- Control system
 evaluates a process
 variable and adjusts
 speed
- Affects the suction and discharge events
- Same adiabatic load per revolution, just a change in RPM

Devices

- Governor
- Fuel Control Valve
- Variable Frequency Drives
- Torque Controllers

Variable Speed Control

Governors, VFD & Other Speed Control

Image courtesy of Waukesha Engine Division

□ What is it?

Fuel Control Valve; Mechanical Governor; Torque Controller; Variable Frequency Drive

□ What does the device do?

 Decreases / Increases the prime mover operating speed

□ How does it work?

- Input variable from the operator via the prime mover control system
- Appropriate signals are generated and the control device makes the necessary adjustments

□ Where is it installed?

Designed as part of the prime mover control system

P-V Diagram

□ Variable Speed Control

☑ Unit / Stage Bypass

- Throttling of Operating Pressures
- End Deactivation
- **Displacement Changes**
- □ Added Fixed Clearance
- □ Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- □ Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- Start Up or Capacity Control
- Modulating Valves
 Commonly used for
 Control Purposes
- Startup: typically hot gas bypass (before cooler)
- Capacity Control: typically cooler gas bypass (after the cooler)
- Gas piped back to the suction scrubber

Devices

Piping system with appropriate plug-type throttling valves

Unit / Stage Bypass

External Piping Bypass

Image courtesy of Cameron Valves

Photos courtesy of El Paso Corp.

* Station's overall efficiency affected, not unit's isentropic efficiency.

□ What is it?

- □ Bypass Valve (Plug-type valve)
- External piping from discharge piping to suction piping (4 to 8 inch piping)

□ What does the device do?

Recycles gas - Allows compressed discharge gas to expand and flow back to the suction side of the compressor

How does it work?

- □ Control overall output of the unit/station
- Open the control valve to allow gas to pass from the discharge to suction piping
- Open suction valve signal to bypass valve to close (up to 20 seconds)

Where is it installed?

 Within the confines of the station piping; between discharge and suction

P-V Diagram

Unit / Stage Bypass

Throttling of Operating Conditions

Variable Speed Control

□ Unit / Stage Bypass

☑ Throttling of Operating Pressures

- End Deactivation
- Displacement Changes
- Added Fixed Clearance
- Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- Adjustment of the operating pressures to a set value
- Typically suction pressure control
- Control system evaluates a process variable and adjusts the suction pressure
- Accomplished through a suction control valve
- Affects the suction and compression events
- □ Changes adiabatic load

Devices

Suction Pressure Reducing Valve

Throttling of Operating Pressures

Suction Pressure Control Valves

Image Courtesy of Kimray

□ What is it?

Plug-type Control Valve – (manual, pneumatic or electric)

□ What does the device do?

Pinch back the suction pressure

□ How does it work?

- □ Intake line is throttled towards off
- No supply (or reduced) supply of gas to compressor
- □ The suction pressure will decline
- Ultimate result is a reduction in capacity

□ Where is it installed?

Within the suction piping prior to the scrubber / pulsation bottle

Throttling of Operating Pressures

P-V Diagram

- Variable Speed Control
- Unit / Stage Bypass
- **Throttling of Operating Pressures**

☑ End Deactivation

- Displacement Changes
- Added Fixed Clearance
- Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

Means to allow gas to flow out of the cylinder end during the compression stroke

Devices

- □ Internal Body Ports
- Suction Valve Unloaders (Finger and Plug-type)
- □ Radial Valve Unloaders
- □ Valve Assembly Lifter
- Front Head Plug-type Bypass

Internal Cylinder Body Ports

Finger-type Valve Unloaders

Image Courtesy of Hoerbiger Corp.

□ What is it?

- Plunger with fingers attached
- General Fits into the seat of the valve

□ What does the device do?

- Depresses the valve plates (deactivating the cylinder end)
- Allows gas to pass through the valves during the compression event
- Gas passes back onto the inlet passage

□ How does it work?

- Fingers push and hold open the moving element in the suction valve
- Air pressure to unload

□ Where is it installed?

Over suction valves (head or crank end)

Plug-type Valve Unloaders

OPEN

Gas flows around valves

Gas flows through valves

What is it?

- Shaft with a plug attached
- Partial valve with a hole in the center

What does the device do?

- Deactivates the cylinder end
- Allows gas to pass through the hole in the valve during the compression event
- Gas passes back into the inlet passage

How does it work?

- Plug seals the hole during normal operation - Air pressure to load
- Remove Air pressure gas pressure pushes the plug to the open position

Where is it installed?

Over suction valves (head or crank end)

INSTALLED COST EFFICIENCY ADAPTABILITY SIMPLICITY AUTOMATABLE

Services, Inc.

GMC 2009 – Atlanta, GA

Images Courtesy of ACI Services, Inc.

Radial Poppet Unloaders

Valve Assembly Lifter

Front Head Plug-type Bypass

□ What is it?

- Front end head with a bypass plug and actuator assembly
- □ External piping to inlet passageways

□ What does the device do?

- Deactivates the cylinder end
- Allows gas to flow through the bypass plug to the bottle or suction valve

How does it work?

- □ Air pressure to seat the bypass plug
- Remove pressure, cylinder pressure will push the plug away from the seat
- □ Gas flows around plug deactivating end

□ Where is it installed?

Cylinder Head End Head

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE
				•••••

P-V Diagram

- Variable Speed Control
- Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- **☑** Displacement Changes
- Added Fixed Clearance
- Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- □ Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- Change of the cylinder bore diameter
- Change of the stroke of the compressor throw

Devices

- Piston and Liner Changes
- □ Crankshaft Changes

Displacement Changes

Liner Insertion (Cylinder Bore Change)

Images Courtesy of Cameron Compression Systems

□ What is it?

- □ Physical change to the cylinder bore size
- Utilization of cylinder slip fit liners

What does the device do?

- Reduces/increases the piston displacement
- □ Affects the cylinder fixed clearance

□ How does it work?

- □ Change the piston diameter
- Install the appropriate liner

□ Where is it installed?

Cylinder bore area

Displacement Changes

P-V Diagram

- Variable Speed Control
- Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- Displacement Changes
- ☑ Added Fixed Clearance
- □ Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- Increase of the cylinder fixed clearance volume
- Once added, clearance is always present
- Physical change to the compressor cylinder
- Affects the compression and expansion events

Devices

- □ Clearance Plugs/Bottles
- □ Valve Spacers
- Piston Modifications
- Cylinder Head Modifications
- □ Liner Changes

Clearance Plugs and Bottles Internal Cylinder Designs

□ What is it?

Cylinder designed with plug ports

□ What does the device do?

- □ Plug/Partial Plug Fills a volume
- □ Cap Exposes designed volume
- Bottle Adds additional volume

□ How does it work?

- □ Remove the plug for added clearance
- □ Install a cap or bottle in place of the plug

□ Where is it installed?

□ In/over a cylinder body port

Images Courtesy of ACI Services, Inc.

Clearance Plugs and Bottles Retrofit Designs

Image Courtesy of ACI Services, Inc.

□ What is it?

Retrofit of added port plugs

□ What does the device do?

- □ Plug/Partial Plug Fills a volume
- □ Cap Exposes designed volume
- □ Bottle Adds additional volume

□ How does it work?

- □ Remove the plug for added clearance
- □ Install a cap or bottle in place of the plug

□ Where is it installed?

- □ Front Head End of Cylinder
- □ Over a Valve (rare)

Valve Spacers

Images Courtesy of Ariel Corporation

□ What is it?

- Ring manufactured from bar stock or tubing
- □ Thickness ranges from 0.375" to 1.50"

□ What does the device do?

- □ Moves the valves away from cylinder bore
- □ Adds fixed clearance to the cylinder end

□ How does it work?

- Valve seats on the spacer instead of the cylinder port
- □ Space under the valve fixed clearance

□ Where is it installed?

- □ Under the suction and/or discharge valves
- □ On one, or both ends of the cylinder

Piston Modifications

Image Courtesy of ACI Services, Inc.

□ What is it?

- D Piston design that is reversible
- □ Physical modification to existing piston

□ What does the device do?

□ Adds fixed clearance to the cylinder end

How does it work?

- □ Minimum Clearance installed one way
- Added Clearance Reverse the piston end
- Permanently add clearance Machine (shorten) the piston length

□ Where is it installed?

□ Piston assembly of the cylinder

Front Head Spacers

What is it?

- Ring manufactured from bar stock
- Thickness varies with desired effect

□ What does the device do?

- Moves the head away from cylinder bore
- Adds fixed clearance to the cylinder end

□ How does it work?

- Remove cylinder front end head
- Install a spacer ring
- Install front end head with longer bolts

□ Where is it installed?

Cylinder front end head

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE
•••••				00000

P-V Diagram

- Variable Speed Control
- Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- Displacement Changes
- □ Added Fixed Clearance
- Adjustable Head End Suction Valve
- □ Added Variable Volume Clearance
- □ Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- The suction valve's position is adjustable
- Valve can be screwed in and out, changing fixed clearance
- Adjusted to fully deactivate the cylinder end
- Affects the compression and expansion events

Devices

Valve-In-Piston Compressor Cylinder

Adjustable Head End Suction Valve

Valve-In-Piston Type Cylinder

❑ What is it?

- Suction valve installed on each end
- Threaded lead screw attached to the H.E. suction valve

□ What does the device do?

- Moves the suction valve away from cylinder bore
- □ Adds fixed clearance to the cylinder end
- Deactivates the Head End

□ How does it work?

□ As lead screw is screwed out, the suction valve will move away from the piston

□ Where is it installed?

Cylinder head end head

INSTALLED COST	EFFICIENCY	ADAPTABILITY	SIMPLICITY	AUTOMATABLE
00000		0000		••000

Adjustable Head End Suction Valve

P-V Diagram

- Variable Speed Control
- □ Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- Displacement Changes
- Added Fixed Clearance
- Adjustable Head End Suction Valve
- ☑ Added Variable Volume Clearance
- Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- Adjust clearance volumes within the design of the device
- Accomplished by Manual, Hydraulic, or Gas Forces

Devices

- □ VVP Manual Screw Type
- □ VVP Power Screw Type
- □ VVP Hydraulic Assisted
- VVP Gas Pressure Controlled

Added Variable Volume Clearance

VVP (Manual Screw Type)

- □ Variable clearance device
- Design as the head end head
- Piston installed on a lead screw

□ What does the device do?

- □ Moves the piston away from cylinder bore
- □ Adds fixed clearance to the cylinder end
- □ Fixed clearance is changed in increments

□ How does it work?

□ As lead screw is screwed out (manually), the piston will move away from the piston

□ Where is it installed?

Cylinder head end head

Added Variable Volume Clearance

VVP (Hydraulic Assisted)

Image Courtesy of ACI Services, Inc.

Image Courtesy of Dresser-Rand Corp.

What is it?

- □ Variable clearance device
- Designed for the front head

□ What does the device do?

- □ Moves the piston away from cylinder bore
- □ Adds fixed clearance to the cylinder end
- □ Fixed clearance is changed in smooth increments

How does it work?

Suction/discharge pressure is a driving force to allow hydraulic fluid to flow in/out of the actuation cylinder allowing the piston to move back and forth

□ Where is it installed?

Cylinder's front head

Added Variable Volume Clearance

P-V Diagram

Pocket Control Valve

Fixed Volume Pocket

Image Courtesy of Dresser-Rand Corp.

- □ Fixed Volume Pocket
- □ Specially designed compressor valve

□ What does the device do?

- □ Allows a fixed clearance to be added
- Varies the effective clearance based on the control pressure

How does it work?

- Valve guard designed to use control gas pressure on guard side of the elements
- Opens when the cylinder pressure is greater than the control pressure
- Closes when the cylinder pressure is less than the control pressure

□ Where is it installed?

Compressor cylinder head or crank end

Control Gas Connection

Added Variable Volume Pocket Clearance

P-V Diagram

- Variable Speed Control
- Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- **Displacement Changes**
- Added Fixed Clearance
- Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- **☑** Added Fixed Volume Clearance Devices
- □ Timed Valve Closing

Defined

- Adjust clearance volumes within the design of the device
- Accomplished by Manual, Hydraulic, or Pneumatic Forces

Devices

- Front Head Volume Pocket
- Valve Cap Volume Pocket
- Internal Body Volume Pocket

Front Head Volume Pockets

Photo Courtesy of Ariel Corporation

□ What is it?

- Fixed clearance device
- Designed for the front head
- Actuator assembly

□ What does the device do?

Adds a predetermined amount of fixed clearance to the cylinder end

□ How does it work?

- Actuation medium supplied to actuation cylinder
- Actuation Pressure to close off volume
- Vent actuation pressure gas pressure moves plug to open the volume

□ Where is it installed?

Cylinder head end head

Valve Cap Volume Pocket

Photo Courtesy of Dominion Resources

Images Courtesy of ACI Services, Inc.

□ What is it?

- □ Fixed clearance device
- Designed as part of the valve cap
- Actuator assembly

□ What does the device do?

Adds a predetermined amount of fixed clearance to the cylinder end

□ How does it work?

- □ Air, gas, or manual power actuates device
- **Closed**: Actuation pressure engaged
- **Open**: Vent actuation pressure
- Requires a special valve retainer

Where is it installed?

 Over a suction or discharge valve on the head or crank end of the cylinder

Internal Body Volume Pockets

Photo Courtesy of Cameron Corporation

□ What is it?

- □ Fixed clearance device
- Actuator assembly

□ What does the device do?

Adds a predetermined amount of fixed clearance to the cylinder end

□ How does it work?

- Actuation medium supplied to actuation cylinder
- □ Actuation Pressure to close of volume
- Vent actuation pressure gas pressure moves plug to open the volume

□ Where is it installed?

- □ Cavity casted into the cylinder
- Head end or crank end

P-V Diagram

Load Changes

- Variable Speed Control
- Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- Displacement Changes
- Added Fixed Clearance
- Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- □ Added Fixed Volume Clearance Devices □ Devices
- ☑ Timed Valve Closing
- **Changes to Valve Flow Area**

Defined

- Delay of the closing point of the suction valves
- Electronic, hydraulic, pneumatic or mechanical means
- Delay reduces the net piston displacement
- Delay increases the effective fixed clearance
- □ The net effect is a reduction in capacity
- Accomplished during the compression event
- Hydraulic / Electronic controlled finger type devices

Timed Valve Closing

HydroCOM / Infinite Step

□ What is it?

Computer controlled, hydraulically activated, finger unloader system

What does the device do?

Forces the suction valve to remain open during the compression event

How does it work?

- Re-expansion the suction valve is closed (due to differential pressure)
- Suction the unloader forces the valve open
- Compression the unloader forces the valve open (gas flows into suction plenum)
- Compression Suction valve is allowed to close at a selected crank angle

Where is it installed?

Image Courtesy of Hoerbiger Corporation

Head end / Crank End Suction Valves

Timed Valve Closing

P-V Diagram

- Variable Speed Control
- Unit / Stage Bypass
- □ Throttling of Operating Pressures
- End Deactivation
- Displacement Changes
- □ Added Fixed Clearance
- Adjustable Head End Suction Valve
- Added Variable Volume Clearance
- Added Fixed Volume Clearance Devices
- Timed Valve Closing
- ☑ Changes to Valve Flow Area

Defined

- Provide More Flow Area
- May Increase Fixed Clearance
- Manual Shut Down Required
- Application may Limit Range of Valve Types to Consider

Devices

Suction and/or Discharge Valves

Adjustments to Valve Flow Areas

Compressor Valves

Images Courtesy of ACI, Cook Manley, Dresser-Rand Corp., and Hoerbiger

□ What is it?

Efficient Compressor Valves

□ What does the device do?

- Reduces Valve Losses
- □ <u>May</u> Include Added Fixed Clearance

How does it work?

- □ Increases Effective Flow Area
- □ Minimizes Effort to Open/Close Valve

□ Where is it installed?

Compressor Valve Ports

Adjustments to Valve Flow Areas

Valve-In-Piston Type Cylinder

Image Courtesy of Dresser-Rand Corp.

What is it?

New Cylinder Design

□ What does the device do?

- □ Moves Discharge Valves to Piston
- □ Adds Fixed Clearance to Cylinder Ends
- Doubles number of Suction Valves

How does it work?

Doubling of suction valves tends to reduce suction valve losses by 75%

□ Where is it installed?

□ Completely New Cylinder

Adjustments to Valve Flow Areas

Selection Process

Selecting the Appropriate Devices for a Specific Application

Selecting the Appropriate Device(s) for a Specific Application

Typically very smooth changes to load/flow

Fixed Clearance Changes Typically smaller load/flow changes

Gives maximum coverage of operating ranges

79

Determine the required range of operating conditions

- □ Gas composition
- Pressure and temperature ranges
- Flows
- □ Important operating points
- **Determine the timing of operating condition changes**
 - □ Fluctuating, gradual, seasonal, random
- **Determine the physical properties of the compressor and driver**
 - Driver load and speed ratings and ranges
 - Compressor frame and cylinder sizes and ratings
 - □ Include any existing load and flow devices
 - **G** System cooling capacities, temperatures and pressure drops

Determine the required range of operating conditions

- **Gas composition**
- Pressure and temperature ranges
- **G** Flows
- □ Important operating points

Determine the timing of operating condition changes

- □ Fluctuating, gradual, seasonal, random
- **Determine the physical properties of the compressor and driver**
 - Driver load and speed ratings and ranges
 - □ Compressor frame and cylinder sizes and ratings
 - □ Include any existing load and flow devices
 - □ System cooling capacities, temperatures and pressure drops

Determine the required range of operating conditions

- **Gas composition**
- Pressure and temperature ranges
- **G** Flows
- □ Important operating points
- **Determine the timing of operating condition changes**
 - **Given Series Provided Activity of Series and Series an**

Determine the physical properties of the compressor and driver

- □ Driver load and speed ratings and ranges
- **Compressor frame and cylinder sizes and ratings**
- □ Include any existing load and flow devices
- **G** System cooling capacities, temperatures and pressure drops

□ Model the compressor performance

- □ Need a robust performance modeling approach
- Determine how well the existing unit handles the range of conditions
- Safe operating limits Load, MAWP, Rod Load, PNR, Low VE, temperatures...
- Identify gaps in unit capability

Investigate alternatives for changing the unit performance

- □ Review types of devices
- Compare relative characteristics of devices with application requirements
- Select tentative devices to be investigated

Effects of Added Clearance

- □ Change the compressor performance model
 - □ Change performance model to add tentative changes

(cylinder bore size, fixed clearances, deactivation, or combinations)

- Evaluate the changes vs. the desired performance and flexibility
- **U** Tune the parameters to optimize the performance
- Review Limits Load, MAWP, Rod Load, PNR, Low VE, Temperatures...
- □ Iterate as necessary until tentative hardware selection is complete

□ Justification – Types of Projects

□ Mandatory Projects

- **Contracted Flow Requirements**
- **□** Equipment Replacement / Maintenance Requirements
- □ HSE (Health-Safety-Environment) Related

Discretionary Projects

- □ Maximize Capacity
- □ Efficiency Improvements
- □ Maintenance Savings
- Automation
- Equipment Protection

Performance Control of Reciprocating Compressors Devices for Managing Load and Flow Justification Process

Justification – Economic Considerations

Costs

- □ Capital costs hardware devices, control system, software
- □ Installation cost, freight, taxes, misc.
- □ Long term operating and maintenance costs

Potential Areas of Savings

- □ Increased flow capacity (throughput)
- **Operation and maintenance labor savings**
- □ Operating efficiency improvement / energy savings
- □ Increased reliability maintenance savings, and downtime reduction
- □ Favorable environmental impact
- □ Maximize asset utilization capital avoidance
- □ Tax savings / incentives
- **Extend equipment useful life**
- Other

□ Typical Financial Hurdles

- Percent Rate of Return on Investment
- □ Months/Years to payback

Performance Control of Reciprocating Compressors Devices for Managing Load and Flow Justification Process

Financial Modeling Tools

Project Financial Analys	Is (US\$)							01	et 1 of2	J		Dat	,				
Pro ject Number	1]	Product	Line								Pro	jeotMgr.				
Pro ject Name	Bypars elimin	alon protect															
Project De coription																	
Rrotĭear o fReturn (yr t)	2006]				Γ											
		Appro val s															
A. Projected Ruel Usage Saving c(%)		Comments		Ŧ	2006	Ŧ	2007	ŧ	2008	÷	2009	ŧ	20 10	+	2011	+ 1	2012
Confidence Level		CTUERD.			100%		100%		100%		100%		100%		100%		100%
New Ruel Concumption		STU/SHP-IT			6,800	⊢	6,800	⊢	6,800		6,800		6,800	-	6,800	-	6.800
Average Unit BHP	EHP			1,000	1	1,000	L	1,000		1,000		1,000		1,000		1,000	
Hours of Operation Per Year Ruel Costper MM BTU		∔.MMAETU		ŧ	2,000 4,00	ŧ	2,000 +.00	ŧ	2,000	ŧ	2,000 +00	ŧ	2,000 4,00	ŧ	2,000	ŧ	2000 +.00
B b created Throughout				1		1		1		1		1		1		1	
Inorea ce h Flow Fate						Ľ		Ľ.								-	
Value per Unit Row																	
C. Projected Maintenance Cost Savings				ŧ	17,500	Ŧ	002,71	ŧ	17,900	+	17,500	ŧ	17,500	Ŧ	17,900	ŧ	17,900
Labor Hours Sa wd		<u> </u>			300	+	300	⊢	300		300		300	-	300		300
Labor Cost Saved					13 500		n an		13.970		13.000		13 400		13.500		13.500
Repair Parts Saved					3,500	+	3,500		3,900		3,500	-	3,500		3,500	-	3,500
Lub doants & Other Rulds Saved					500		900		500		500		500		500		500
Offier Costs Saved					-00		400		400		- 600		-00	_	400		+00
D Other Study and lists				1	3,000	1	2.000	1	2000	I	3,000	1	2,000	1	2000	1	2000
a one and one		<u> </u>			1,000	H	1.000	H	1.000	1	1,000	1	1,000	1	1,000	1	1,000
				÷	1,000	i.	1,000	i.	1,000	+	1,000	ŧ	1,000	ŧ.	1,000	÷	1,000
				+	1,000	ŧ	1,000	ŧ	1,000	ŧ	1,000	ŧ	1,000	+	1,000	ŧ	1,000
E Incremental Operationing Costs (1) st				+	500	Ŧ	900	Ŧ	900	Ŧ	3,500	ŧ	500	ŧ	500	ŧ	500
Air Compressor Power& Maint				ŧ	500	ŧ	900	ŧ	900	÷	500	ŧ	500	ŧ	500	ŧ	500
Air Compressor Replacement										+	3,000						
Net Calvings Calvings(= A+ B+ C+D-E)				ŧ	1,620,400	ł	1,620,400	ŧ	1,620,400	ŧ	1,617,600	ŧ	1,620,600	ŧ	1,620,400	1 1	1,620,400
BITDA				ŧ	1,620,400	ŧ	1,620,400	ŧ	1,620,400	÷	1,617,400	ŧ	1,620,400	ŧ	1,620,400	+ 1	1,620,400
eminal value		Implementat	Ion Costs (e	ht2)	_		_		Years A	fer	mplement	hto		-		*	
Project Payback Life Cycle V	ear	2004	200	6	2006		2007		2008		2009		20 10		2011		2012
EBITDA		+ .	1 05	3,000 +	1,620,400	11	1,620,400	1	1,620,400	+	1,617,00	+	1,620,400	÷	1,620,400	+ 1	1,620,400
EBT			1. 00	5.000 1	1575 150	1:	1672 370	1:	1 602 300	:	(18,100)	:	1611 300		1670.000		620.400
- Cadi Tare c (oredit)		1 .	+ (12	6,506) \$	614,309	1	624,897	1	624,897	+	623,727	+	628,627	+	631,996	+	631,956
Working Capital in ve stment	t			+	161,790	4		ŧ		+		+	1.00	÷		+	(161,790)
Capital in ve stment		+ •	4 (18	1,000			10.10		10.10		10.00		0.000				
Athente Couch Bow		1	+ 7	2,000 \$	45,250	+	16,100	+	18,100	+	18,100	+	9,060	+	900 444	+	. 150 22+
AND DIVINI HOW	-	Additional De	oripton &	Commen	000,402	1.4	910,908		205,205		203/263		201,004		100,000	1	130,234
El count Pate	8.0%																1
income Ta : Pate	39%																
IRR	288%	1															
Rayback Time (Vear O	44,451,064.9																
PI																	
a company of																	

Financial Modeling Tools

Savings Spreadsheet

1. Fuel Savings

300	Number of days operating per year					
24	Average number of hours operating per day					
1200	Average Engine Load (BHP)					
7600	Average Engine Fuel Consumption (BTU/BHP-hr)					
950	Fuel Heating Value (BTU/CF)					
\$5.00	0 Fuel Gas Cost (US\$/MCF)					
5.0	Efficiency Gain (%)					
\$24,192	Savings Sub-total (\$US/yr)					

RECAP

We have provided:

- A fundamental review of the many types of reciprocating compressor unloading and capacity control devices,
- Useful knowledge for evaluating and comparing individual unloading and control devices,
- ☑ Tools for identifying the best approach and devices for optimizing current, reapplied and new compressor performance relative to unique needs and budgets,
- An objective method for selecting and economically justifying optimum control devices

