Special Notes per Device Category | Category | Notes | |--|--| | Variable Speed
Control | Pulsation Notes: Speed is the primary determination of most pulsation issues. Flow Control: Smooth capacity control device Load Control: Poor load control device. Other: Engines often run most efficient at rated speeds. Emissions often best (lowest) at rated speeds. | | Suction Pressure
Control | Pulsation Notes: Not usually a major contributor to pulsation issues. Flow Control: Smooth capacity control device. Load Control: Poor load control device. Other: Many times throttling suction back results in higher loads on the compressor, not lower loads. | | Fixed
Clearance or
Displacement
Changes | Pulsation Notes: Not usually a major contributor to pulsation issues. Flow Control: Stepped capacity control device. Load Control: Stepped load control device. Efficient load control device. Other: Shut downs required to install/remove devices. | | Added Fixed
Volume Pocket
Clearance | Pulsation Notes: Not usually a major contributor to pulsation issues. Flow Control: Stepped capacity control device. Load Control: Stepped load control device. Efficient load control device. Other: Devices usually add a finite amount of additional fixed clearance. | | Added Variable
Volume Pocket
Clearance | Load Control: Smooth load control device (when automated). Efficient load | | Cylinder End
Deactivation | Pulsation Notes: Single-acting modes are primary contributors to pulsation issues. Flow Control: Stepped capacity control device. Load Control: Stepped load control device. Inefficient load control device. Other: Ends and/or cylinder can be hot, sometimes requiring a shut down. | | Timed Valve
Closing | Pulsation Notes: Devices known to change system's pulsation characteristics. Flow Control: Smooth capacity control device. Load Control: Smooth load control device. Inefficient load control device. Other: Often used in process markets and installed on all stages of compression. | ## Variable Speed: # Governors, VFDs and other speed control devices. | | Common means of capacity control | |-------------------|---| | Relative | Lowers compressor valve loss loads | | Advantages | Increases unit's isentropic efficiency | | | Provides smooth load and capacity changes | | | Torque usually remains same regardless of speed | | | Decreases fuel efficiency | | Relative | Often increases emissions | | Disadvantages | Increases risk of pulsations/vibrations | | | Poor load control device | | | Certain ranges of speeds may cause vibration/pulsation issues. | | | Usually not retrofitted to existing equipment. | | | • Engines and Variable Frequency Drive motors (VFDs) provide speed control | | Pre-installation | as a standard feature. Other motors may need to be equipped with torque | | Issues | converters to provide variable speed. | | | Acoustic studies are especially recommended for systems with variable speed | | | units. | | | • Most slow speed engines can run from 100% rated speed to about 50% rated | | Post-installation | speed: most high speed engines can run from 100% down to 75%. | | Issues | • Certain speeds may not be usable due to vibrations and/or pulsation concerns. | | | Some motors and engines can be altered later to provide more power. | | Performance | Changes to speed have very little effect on interstage pressures. | | Notes | • Inertia-based rod loads and pin reversal issues are directly related to changes | | Notes | in speed. | | Maintenance | Requires minimal maintenance | | Issues | Reference OEM manual for specific maintenance schedules | | | • Eagy to control | | Miscellaneous | Easy to control Most standard control panels provide for speed control | | Notes | Most standard control panels provide for speed control. | | | Capital: Low (except converting fixed speed motors to variable speed) | | Economic | Operating: Low | | Considerations | Maintenance: Low | | | Other: Energy and environmental costs | # **Suction Throttling: Suction Pressure Control Valve** | Relative
Advantages | Inexpensive device Often required hardware Simple control device Smooth flow control | |-----------------------------|--| | Relative
Disadvantages | Wastes energyCan lead to higher BHP/MM | | Pre-installation
Issues | Easy to control – most basic control panels support controlling inlet valves. | | Post-installation
Issues | Lowering suction pressures too much may create rod load issues, high compression ratios and hence high discharge temperatures. Changes to ratio can lead to pulsation issues. | | Performance
Notes | Always leads to lowering capacity. Lowering suction may often increase load. | | Maintenance
Issues | Easy to maintain. | | Miscellaneous
Notes | Most units have to have inlet control valve as part of their startup and shut
down procedures. | | Economic
Considerations | Capital: Low Operating: Low Maintenance: Low Other: Energy costs to re-compress throttled gas. | ## **Clearance Plugs** | Relative
Advantages | Inexpensive device (part of cylinder design) | |---|--| | Relative
Disadvantages
Pre-installation | Time and Effort Shut Down Required Limited Added Clearance Available Inherent part of cylinder design | | Post-installation
Issues | Effort and time of adding and removing devices often means that the unit will not be controlled to operate at maximum ability. | | Performance
Notes | Maximum useable volume designed into cylinder. | | Maintenance
Issues | No special maintenance is required. | | Miscellaneous
Notes | Ideal for applications where operating pressures do not change rapidly, or significantly over short periods of time. Changes to cylinder clearances do not normally have a significant affect on pulsation loading. | | Economic
Considerations | Capital: Low Operating: Low Maintenance: Low Other: Lost revenue during Shut Downs | ## **Valve Spacers** | Relative
Advantages | Inexpensive deviceOften offered as a standard OEM option | |-----------------------------|--| | Relative
Disadvantages | Time and Effort Shut Down Required Limited Added Clearance Available Cannot be Automated | | Pre-installation
Issues | Not applicable for use in automated applications. Applications requiring significant clearance volume modification may be limited to cylinder bodies with deep valve pockets. | | Post-installation
Issues | Operators should use spacers in consideration of, and in conjunction with, Variable Volume pockets to achieve best performance. Effort and time of adding and removing devices often means that the unit will not be controlled to operate at maximum ability. | | Performance
Notes | Cylinder bodies with shallow valve pockets may result in increased pressure drop through modified valve cage ports required to accept spacers. On cylinders with VVPs, usually the Crank End is fitted first and/or with more spacers so that cylinder loads are more balanced. | | Maintenance
Issues | No special maintenance is required. Bottom valves with spacers may need drains to prevent oil collection. | | Miscellaneous
Notes | Ideal for applications where operating pressures do not change rapidly, or significantly over short periods of time. Changes to cylinder clearances do not normally have a significant affect on pulsation loading. | | Economic
Considerations | Capital: Low Operating: Low Maintenance: Low Other: Lost revenue during Shut Downs | ## **Front Head Spacers** | Relative
Advantages | Allows for significant changes to clearance | |-----------------------------|---| | Relative
Disadvantages | Time and Effort Shut Down Required Cannot be Automated Not usually practical for Crank End | | Pre-installation
Issues | Not applicable for use in automated applications. | | Post-installation
Issues | • Effort and time of adding and removing devices often means that the unit will not be controlled to operate at maximum ability. | | Performance
Notes | • Spacers must be designed such that they do not interfere significantly with gas flow between valve pockets and cylinder main bore. | | Maintenance
Issues | Spacer design may permit lube oil accumulation in clearance volume added between head and cylinder liner or body. Hence, drains must be considered. Mechanical piston end clearance may vary as clearance volume is changed. | | Miscellaneous
Notes | Ideal for applications where operating pressures do not change rapidly, or significantly over short periods of time. Changes to cylinder clearances do not normally have a significant affect on pulsation loading. | | Economic
Considerations | Capital: Moderate Operating: Low Maintenance: Low Other: Costs during Shut Downs | ## **Piston Changes** | Relative
Advantages | Provides potential for significant clearance volume changes | |-----------------------------|--| | Relative
Disadvantages | Not applicable for automated applications Unit shut down is required High costs | | Pre-installation
Issues | Not applicable for use in automated applications. Usually requires new piston. Not ideal for high-pressure compression. Not ideal for small bore cylinders. | | Post-installation
Issues | Effort and time of adding and removing devices often means that the unit will
not be controlled to operate at maximum ability. | | Performance
Notes | If pipe plugs used to feed volume, then ports feeding internal piston volume
must be properly sized for the application. | | Maintenance
Issues | Mechanical piston end clearance may vary as clearance volume is changed,
depending on nature of design. | | Miscellaneous
Notes | Ideal for applications where operating pressures do not change rapidly, or significantly over short periods of time. Changes to cylinder clearances do not normally have a significant affect on pulsation loading. | | Economic
Considerations | Capital: High Operating: Low Maintenance: Low Other: Costs during Shut Downs | # Variable Clearance via Adjustable Head End Suction Valves: ## Valve-in-Piston (VIP) | Relative
Advantages | Provides wide range of clearance volume adjustment Provides means for deactivation of head and/or crank ends | |-----------------------------|---| | Relative
Disadvantages | Valve area to swept volume ratio not ideal for larger bores. Difficult to add other types of unloading to cylinders. Thus, cylinders and speed must be closely sized to specific applications. Unique, proprietary (patented) design. | | Pre-installation
Issues | Best suited for new applications. Cannot be retrofitted to existing cylinders. | | Post-installation
Issues | Normally not automated | | Performance
Notes | Provides wide range of performance control for both the head and crank end
of cylinders. | | Maintenance
Issues | Valve maintenance is complicated as a result of the basic cylinder body design
required by this concept. | | Miscellaneous
Notes | Wide range of performance control increases the need for acoustic study to minimize risk of gas piping pressure pulsation problems. | | Economic
Considerations | Capital: Low Operating: Low Maintenance: Medium Other: | #### **Added Variable Volume Pocket Clearance:** ## Variable Volume Pockets (Manual Screw Type) | Relative
Advantages | Inexpensive device Standard OEM device Smooth performance control Do not restrict gas flow through valves/passages | |-----------------------------|--| | Relative
Disadvantages | Require manual assistance to change clearances Often require shut downs when being adjusted | | Pre-installation
Issues | Users can easily retrofit existing cylinders. VVPs will work equally well on high and low speed compressors. | | Post-installation
Issues | Operators need to take care to closely follow performance curves. Adjusting
one cylinder's VVP 100% is not always the same as adjusting two VVPs 50%
each. | | Performance
Notes | Difficulty of operating often leads to very conservative use. The higher the operating pressure and/or the smaller the cylinder bore the more difficult the use of a VVP. When permitted, performance can be adjusted during operation if balance pressure lines are properly designed. Load and Flow can potentially be smoothly controlled. Very little flow restriction between the pocket and the cylinder allow for minimal losses of efficiency as the pocket is opened. | | Maintenance
Issues | Handwheels may become damaged due to vibrations. Require little maintenance. | | Miscellaneous
Notes | Accepted approach for performance control in the gas gathering market segment. Pipeline compressors typically do not have variable volume pockets. Process compressors typically do not have variable volume pockets. VVPs are typically located on the front head. | | Economic
Considerations | Capital: Low Operating: Low Maintenance: Low Other: Lower revenues due to conservative use of devices. | #### **Added Variable Volume Pocket Clearance:** ## Variable Volume Pockets (Hydraulic Assisted) | Relative
Advantages | Smooth performance control Do not restrict gas flow through valves/passages Rapid reaction to process changes | |-----------------------------|---| | Relative
Disadvantages | Initial capital costs are high When automated, usually requires intelligent control | | Pre-installation
Issues | Users can easily retrofit existing cylinders. Extra hydraulic and/or gas tubing not ideal for sour gas environments. Maximum working pressure limited (typically less than 2000 psi). Speed limited (typically less than 1200 RPM, ideally less than 1000 RPM). Device reaction times are a function of the differential gas forces. These types of devices are often used in conjunction with fixed volume pockets. | | Post-installation
Issues | Reaction times of assisted VVPs and normal fixed volume pockets can differ significantly. Operators and control panels need to determine valid sequences of events to accommodate any performance adjustment delays. Often designed to operate manually with needle valves, or automatically with solenoids or pneumatic valves. | | Performance
Notes | Load and Flow can potentially be smoothly controlled. Very little flow restriction between the pocket and the cylinder allow for minimal losses of efficiency as the pocket is opened. | | Maintenance
Issues | Hydraulic systems require maintenance (oil changes, seal/gasket changes). | | Miscellaneous
Notes | Most VVPs are typically located on the front head. Presently, not many of these devices in actual use. | | Economic
Considerations | Capital: High Operating: Low Maintenance: Medium Other: Potential fuel savings by running engines at full load conditions.
Higher revenues experienced as device optimizes unit's flow capabilities. | #### **Added Variable Volume Pocket Clearance:** ## **Variable Volume Pockets (Gas Pressure Controlled)** | Relative
Advantages | Smooth performance control Rapid reaction to process changes May be used on front head, and on valves | |-----------------------------|---| | Relative
Disadvantages | Often adds noticeable amounts of additional fixed clearance. Added complexity of controlling balanced gas pressure | | Pre-installation
Issues | May be adapted to existing fixed volume pockets. VVPs will work equally well on high and low speed compressors. | | Post-installation
Issues | Complex control system for load and flow predictions, as well as internal
pressure predictions required for Rod Load and Pin Reversal calculations. | | Performance
Notes | Load and Flow can potentially be smoothly controlled. When used on front heads, no flow restrictions between the pocket and the cylinder allow for minimal losses of efficiency as the pocket is opened. | | Maintenance
Issues | Gas control systemControl valves require similar maintenance as regular valves | | Miscellaneous
Notes | Gas-balanced VVPs can be located on valve caps. Presently, not many of these devices in actual use. Limited field experiences. | | Economic
Considerations | Capital: Medium Operating: Low Maintenance: Low to Medium Other: Potential fuel savings by running engines at full load conditions. | ## **Added Fixed Volume Pocket Clearance:** #### **Front Head Volume Pockets** | Relative
Advantages | Do not restrict gas flow through valves/passages Easy to automate Economical approach to performance control Prevalent in the industry from OEMs and third party suppliers Proven method of performance control Spacers/fillers can adjust volume for later re-application of compressor | |-----------------------------|---| | Relative
Disadvantages | Stepped performance approach Some devices do not have indicators to show current state of device | | Pre-installation
Issues | Easy to retrofit existing cylinders. FVPs work well on high and low speed compressors. FVPs work well on compressors of various stroke lengths. Ideal for lower-medium to high compression ratios. Exotic gases may limit application. | | Post-installation
Issues | Manually actuated pockets may be physically difficult to actuate. | | Performance
Notes | Unit performance can be adjusted during operation (either manually or automatic). Since there is very little flow restriction between the pocket and the cylinder, there will be minimal losses of efficiency as the pocket is opened. Stepped approach to performance control. | | Maintenance
Issues | Seals and gaskets are required to be replaced. Actuation system requires additional maintenance (solenoid, actuation lines, check valves, etc). Vent line issues. Maintain required actuation pressure for proper operation. 1-5 year service for pneumatic systems. | | Miscellaneous
Notes | Usually designed and sized for an application's operating ranges. Standard means of performance control within the pipeline transmission and process market segments. | | Economic
Considerations | Capital: Low to Medium Operating: Low Maintenance: Low to Medium Other: Offered as additional item for most new unit sales. | #### **Added Fixed Volume Pocket Clearance:** ## **Valve Cap Volume Pockets** | Relative
Advantages | Prevalent in the industry from () HMs and third party suppliers | | | | | | | |-----------------------------|---|--|--|--|--|--|--| | Relative
Disadvantages | Stepped performance approach Some devices do not have indicators to show current state of device May require switching from single deck to double deck valves to maintain appropriate flow areas Requires special ported valves. | | | | | | | | Pre-installation
Issues | Easy to retrofit existing cylinders. FVPs work well on high and low speed compressors. FVPs work well on compressors of various stroke lengths Ideal for lower-medium to high compression ratios. Exotic gases may limit application. | | | | | | | | Post-installation
Issues | Manually actuated pockets may be physically difficult to actuate. | | | | | | | | Performance
Notes | Unit performance can be adjusted during operation (either manually or automatic). Since there is very little flow restriction between the pocket and the cylinder, there will be minimal losses of efficiency as the pocket is opened. Stepped approach to performance control. | | | | | | | | Maintenance
Issues | Seals and gaskets are required to be replaced. Actuation system may require additional maintenance (solenoid, actuation lines, check valves, etc). Vent line issues. Maintain required actuation pressure for proper operation. 1-5 year service for pneumatic systems. | | | | | | | | Miscellaneous
Notes | Usually designed and sized for an application's operating ranges. Standard means of performance control within the pipeline transmission and process market segments. | | | | | | | | Economic
Considerations | Capital: Low to Medium Operating: Low Maintenance: Low to Medium Other: Offered as additional item for most new unit sales. | | | | | | | ## **Added Fixed Volume Pocket Clearance:** ## **Internal Body Volume Pockets** | Relative
Advantages | Easy to automate Economical approach to performance control Proven method of performance control Unloading is accomplished independent of the valves and gas passages | | | | | | |-----------------------------|---|--|--|--|--|--| | Relative
Disadvantages | Stepped performance approach Some devices do not have indicators to show current state of device | | | | | | | Pre-installation
Issues | Easy to retrofit existing cylinders. FVPs work well on high and low speed compressors. FVPs work well on compressors of various stroke lengths Ideal for lower-medium to high compression ratios. | | | | | | | Post-installation
Issues | Pocket is predetermined and molded into the cylinder body. Use of filler
pieces to reduce volume is often not practical. | | | | | | | Performance
Notes | Unit performance can be adjusted during operation (either manually or automatic). Since there is very little flow restriction between the pocket and the cylinder, there will be minimal losses of efficiency as the pocket is opened. Stepped approach to performance control. | | | | | | | Maintenance
Issues | Seals and gaskets are required to be replaced. Actuation system may require additional maintenance (solenoid, actuation lines, check valves, etc). Vent line issues. Maintain required actuation pressure for proper operation. | | | | | | | Miscellaneous
Notes | Not common practice for new cylinders. | | | | | | | Economic
Considerations | Capital: Low (inherent part of cylinder design) Operating: Low Maintenance: Low Other: Adds cost to the initial design of the cylinder – designing a cylinder with pockets increases the cost of the pattern and all castings. | | | | | | # **Timed Valve Closing:** # **HydroCOM** | Relative
Advantages | 1 1 2 | | | | | | | |-----------------------------|---|--|--|--|--|--|--| | Relative
Disadvantages | Requires a high level of automation for proper control. Installation restricts gas passages and valve areas. Utilizes a finger type device for depressing the valve plates. Separate hydraulic oil system used for actuation of device. Compressor efficiency reduced due to the back flow of the gases when the valve is held open. | | | | | | | | Pre-installation
Issues | Primarily used on slow speed, process-type compressors. Need to have a unit control panel. Retrofits are complex. | | | | | | | | Post-installation
Issues | Limited to less than 2320 psi. Limited to less than 1200 RPM. Used only on plate type valves (ensure Peek or MT material is used). Maximum suction valve temperature of 250 deg. F. Suitable for corrosive environments. Suitable for non-lube applications. | | | | | | | | Performance
Notes | Adjust performance to allow for the reduction in valve flow area (higher resistance factor during normal operation.) May be required to be installed on all suction valves. Review the entire operating range to ensure rod reversal and rod loads are within the acceptable OEM specifications. Dynamic changes in internal pressures may make prediction of rod loads and pin reversals more difficult. | | | | | | | | Maintenance
Issues | Seal housing contains dynamic and static seals that require attention. Hydraulic system requires maintenance: dual supply and return filters; float, pressure, and temperature switches; hydraulic oil lines, pumps, and heater/cooler; and oil maintenance program. Wear of valve sealing elements due to the finger type device. OEM provides an overhaul schedule for each component. Need to remove the device to service the suction valves. | | | | | | | | Miscellaneous
Notes | Not suited for harsh environment, such as gas gathering. | | | | | | | | Economic
Considerations | Capital: High Operating: Medium Maintenance: Medium Other: Losses associated with back-flow of suction gas. | | | | | | | # **Timed Valve Closing: Infinite Step Unloader** | | Online monitoring | | | | | |----------------------------|---|--|--|--|--| | Relative | Stepless capacity control | | | | | | Advantages | Balances load across stages, if applied | | | | | | | Balances temperatures across stages, if applied | | | | | | | Requires a high level of automation for proper control. | | | | | | | Installation restricts gas passages and valve areas. | | | | | | Relative | Utilizes a finger type device for depressing the valve plates. | | | | | | Disadvantages | Separate hydraulic oil system used for actuation of device. | | | | | | | Compressor efficiency reduced due to the back flow of the gases when the | | | | | | | valve is held open. | | | | | | Pre-installation | Need to have a unit control panel. | | | | | | Issues | Retrofits are complex. | | | | | | | Limited to less than 1200 RPM. | | | | | | | Used only on plate type valves (ensure Peek or MT material is used). | | | | | | Post-installation | Suitable for corrosive environments. | | | | | | Issues | Suitable for non-lube applications. | | | | | | | Not published, but likely there is a limit on the suction pressure. | | | | | | | Adjust performance to allow for the reduction in valve flow area (higher) | | | | | | | resistance factor during normal operation.) | | | | | | Performance | May be required to be installed on all suction valves. | | | | | | Notes | Review the entire operating range to ensure rod reversal and rod loads are | | | | | | Notes | within the acceptable OEM specifications. | | | | | | | Dynamic changes in internal pressures may make prediction of rod loads and | | | | | | | pin reversals more difficult. | | | | | | | Hydraulic system requires maintenance: dual supply and return filters; float, | | | | | | • | pressure, and temperature switches; hydraulic oil lines, pumps, and | | | | | | Maintenance | heater/cooler; and oil maintenance program. | | | | | | Issues | Wear of valve sealing elements due to the finger type device. | | | | | | | OEM provides an overhaul schedule for each component. Need to represent the desire to provide the provider as less. | | | | | | | Need to remove the device to service the suction valve. Need to remove the device to service the suction valve. | | | | | | Miscellaneous | Not suited for harsh environment, such as gas gathering. Here to be a suited for harsh environment, such as gas gathering. | | | | | | Notes | Hydraulic pressure and timing are used to dampen the force exerted on the | | | | | | | valve elements due to the fingers. | | | | | | T • • | Capital: High Operating: Medium | | | | | | Economic
Considerations | Operating: Medium Maintenance: Medium | | | | | | Considerations | Maintenance: Medium Other Leases associated with healt flow of quotien ass | | | | | | | Other: Losses associated with back-flow of suction gas. | | | | | # **Internal Cylinder Body Ports** | Relative
Advantages | Easy to automate Can be used on either end of cylinder Unloading accomplished independent of valves and gas passages | | | | | | | |-----------------------------|--|--|--|--|--|--|--| | Relative
Disadvantages | Cannot be retrofitted Adds fixed clearance in most cases Limited practicality on short stroke compressors Stepped unloading | | | | | | | | Pre-installation
Issues | Port is built into cylinder by OEM Requires control and vent systems, if pneumatic | | | | | | | | Post-installation
Issues | Performance is only controlled within limits of the device • | | | | | | | | Performance
Notes | Unit performance can be adjusted during operation | | | | | | | | Maintenance
Issues | 1-5 year service intervals on actuators Gaskets, seals and electrical devices Vent lines must be kept clear | | | | | | | | Miscellaneous
Notes | Tends to be used only on long stroke cylinders with space for porting. | | | | | | | | Economic
Considerations | | | | | | | | # **Valve Seal Element Opening – Finger Type Devices** | Relative | Easy to automateMay be used to deactivate either end | | | | | | | |-----------------------------|---|--|--|--|--|--|--| | Advantages | May be retrofitted to most compressor cylinders Large unloading step | | | | | | | | Relative
Disadvantages | Stepped unloading Mechanical complexity may limit reliability Increased valve pocket losses during normal operation Use limited by suction pressure (e.g. high pressure cylinder with small valves) | | | | | | | | Pre-installation
Issues | Requires control and vent systems May not be required on all suction valves Limited use on cylinders with small valves | | | | | | | | Post-installation
Issues | Unit performance can be adjusted during operation Prolonged use of multiple devices may cause overheating | | | | | | | | Performance
Notes | Fingers create additional valve losses during normal operation Consider effect on interstage pressure when activated | | | | | | | | Maintenance
Issues | Finger mechanism requires precision rebuilding Limited valve seat re-machining possible 1-5 year service intervals on actuators Gaskets, seals and electrical devices Vent lines must be kept clear | | | | | | | | Miscellaneous
Notes | Breakage of fingers may cause consequential cylinder and/or piston damage. | | | | | | | | Economic
Considerations | Capital: Medium Operating: Medium Maintenance: Medium Other: | | | | | | | # Valve Seal Element Opening via Rotary Poppet Devices | Relative
Advantages | Easy to automate May be used to deactivate either end Efficient Large unloading step | | | | | | | |---|---|--|--|--|--|--|--| | Relative
Disadvantages | Stepped unloadingMay add significant fixed clearance | | | | | | | | Pre-installation
Issues | Requires control and vent systems | | | | | | | | Post-installation
Issues | Unit performance can be adjusted during operation | | | | | | | | Performance
Notes | Consider effect on interstage pressure when activated | | | | | | | | Maintenance
Issues | Limited valve seat re-machining possible 1-5 year service intervals on actuators Gaskets, seals and electrical devices Vent lines must be kept clear | | | | | | | | Miscellaneous
Notes | • | | | | | | | | Capital: Medium Operating: Low Maintenance: Low Other: | | | | | | | | ## **Valve Assembly Lifter** | Relative
Advantages | Efficient method of end deactivation May be used to deactivate either end May be retrofitted to most compressor cylinders Large unloading step | | | | | | | |-----------------------------|---|--|--|--|--|--|--| | Relative
Disadvantages | Usually requires valve redesign for lifting Mechanical complexity may limit reliability Stepped unloading | | | | | | | | Pre-installation
Issues | Requires control and vent systems | | | | | | | | Post-installation
Issues | Unit performance can be adjusted during operation | | | | | | | | Performance
Notes | Consider effect on interstage pressure when activated | | | | | | | | Maintenance
Issues | 1-5 year service intervals on actuators Gaskets, seals and electrical devices Vent lines must be kept clear x | | | | | | | | Miscellaneous
Notes | Sealing issues around valve during normal use need to be monitored | | | | | | | | Economic
Considerations | Capital: Medium Operating: Low Maintenance: Low to Medium Other: | | | | | | | ## **Valve Plug-type Bypass** | Relative
Advantages | Can be used to deactivate either end of cylinder Large unloading step May be retrofitted to most cylinders | | | | | | |-----------------------------|---|--|--|--|--|--| | Relative
Disadvantages | Requires a reduction of valve flow area Stepped unloading If new valves are required to keep same flow areas, then resulting designs will often increase unit's fixed clearances. | | | | | | | Pre-installation
Issues | Adds a small amount of fixed clearance to cylinder Reduced flow area of the valve increases valve losses Requires control and vent systems | | | | | | | Post-installation
Issues | Unit performance can be adjusted during operation | | | | | | | Performance
Notes | Consider effect on interstage pressure when activated | | | | | | | Maintenance
Issues | 1-5 year service intervals on actuators Gaskets, seals and electrical devices Vent lines must be kept clear | | | | | | | Miscellaneous
Notes | • | | | | | | | Economic
Considerations | Capital: Medium Operating: Medium Maintenance: Low Other: | | | | | | # Front Head End Plug-type Bypass | Relative
Advantages | Efficient means of deactivating head end Large unloading step Does not compromise valve area or performance May be retrofitted to most cylinders Easily automated | | | | | | |-----------------------------|---|--|--|--|--|--| | Relative
Disadvantages | Application limited to head end Requires external piping connection to suction header or valve cap Stepped unloading | | | | | | | Pre-installation
Issues | Requires external piping Adds a small amount of fixed clearance to head end of cylinder Requires control and vent systems | | | | | | | Post-installation
Issues | Unit performance can be adjusted during operation | | | | | | | Performance
Notes | Efficient; low parasitic loss when activated Small added fixed clearance when deactivated | | | | | | | Maintenance
Issues | Internal actuator requires disassembly for servicing 1-5 year service intervals on actuators Gaskets, seals and electrical devices Vent lines must be kept clear | | | | | | | Miscellaneous
Notes | May include a fixed volume pocket in its design. | | | | | | | Economic
Considerations | Capital: Medium Operating: Low Maintenance: Low Other: | | | | | | ## **Unit/Stage Bypass:** # **External Piping Bypass** | Relative
Advantages | Simple operation Can reduce downstream flow from 0% to 100% Reliable Effective for unloading compressor for start-up Required hardware for most installations | | | | | | | |-----------------------------|---|--|--|--|--|--|--| | Relative
Disadvantages | Very inefficient – does not unload the compressor in normal operating range! Large pressure drops across throttle valve may cause freeze-up, liquid formation or hydrate formation Requires gas cooling (of bypass gas) to prevent overheating the compressor | | | | | | | | Pre-installation
Issues | Proper control valve and line sizing Coded piping or vessel connections Requires control system | | | | | | | | Post-installation
Issues | Control valve freeze up High energy cost when in use Unit performance can be adjusted during operation Prolonged use will cause overheating unless recycled gas is cooled | | | | | | | | Performance
Notes | Least efficient method of capacity control | | | | | | | | Maintenance
Issues | Minimal | | | | | | | | Miscellaneous
Notes | Standard method of capacity found in most simple control panels. | | | | | | | | Economic
Considerations | Capital: Medium Operating: Very high Maintenance: Low Other: | | | | | | | #### **DEVICE RATING SUMMARY** (Table 1 of 3) | DEVICE | INSTALLED COST | EFFICIENCY | ADAPTABILITY | SIMPLICITY | AUTOMATABLE | |--|----------------|------------|--------------|------------|-------------| | Variable Speed Control | ••••• | ••••• | ●0000 | ••••• | ••••• | | Unit / Stage Bypass | •••• | •0000 | •••• | ••••• | ••••• | | Throttling of Operating
Conditions | •••• | ••••• | •••• | ••••• | ••••• | | End Deactivation
(Internal Body Ports) | ••••• | ••000 | ●0000 | •••• | ••••• | | End Deactivation
(Finger Type
Valve Unloaders) | •••• | ••••• | •••• | •••• | ••••• | | End Deactivation
(Plug Type
Valve Unloaders) | •••• | ••••• | •••• | •••• | ••••• | | End Deactivation
(Radial Poppet
Unloaders) | 00000 | ••000 | •••• | 00000 | ••••• | | End Deactivation
(Valve Assembly Lifter) | •••• | ••000 | •••• | •••• | •••• | In general, more black circles • are better. If grey circles • are shown, treat as white o on existing units, and as black • on new units. #### **DEVICE RATING SUMMARY** (Table 2 of 3) | DEVICE | INSTALLED COST | EFFICIENCY | ADAPTABILITY | SIMPLICITY | AUTOMATABLE | |---|----------------|------------|--------------|------------|-------------| | End Deactivation
(Front Head Plug Type
Bypass) | •••• | ••000 | •••• | •••• | ••••• | | Displacement Changes | •••• | •••• | •••• | ●0000 | 00000 | | Added Fixed Clearance
(Clearance Plugs and
Bottles) | ••••• | •••• | ••••• | ••000 | 00000 | | Added Fixed Clearance
(Valve Spacers) | ••••• | •••• | ••••• | ••000 | 00000 | | Added Fixed Clearance
(Piston Modifications) | •••• | •••• | •••• | •0000 | 00000 | | Added Fixed Clearance
(Front Head Spacers) | ••••• | •••• | •••• | | 00000 | | Adjustable Head End
Suction Valve | ●0000 | •••• | ●0000 | ••000 | ••••• | | Added Variable Volume
Clearance
(Manual Screw Type) | 00000 | •••• | ●0000 | ••000 | 00000 | In general, more black circles • are better. If grey circles • are shown, treat as white o on existing units, and as black • on new units. #### **DEVICE RATING SUMMARY** (Table 3 of 3) | DEVICE | INSTALLED COST | EFFICIENCY | ADAPTABILITY | SIMPLICITY | AUTOMATABLE | |--|----------------|------------|--------------|------------|-------------| | Added Variable Volume
Clearance
(Hydraulic Assisted) | ••000 | •••• | •••• | •••• | •••• | | Added Variable Volume
Clearance (Gas Pressure
Controlled) | | •••• | ••000 | •••• | | | Added Fixed Volume
Clearance Devices
(Front Head Volume
Pockets) | •••• | •••• | •••• | 00000 | ••••• | | Added Fixed Volume
Clearance Devices
(Valve Cap Volume
Pockets) | •••• | •••• | •••• | 00000 | ••••• | | Added Fixed Volume
Clearance Devices
(Internal Body Volume
Pockets) | ••••• | •••• | ••••• | •••• | ••••• | | Timed Valve Closing | ●0000 | ••000 | ••000 | ••••• | •••• | In general, more black circles $\underline{\bullet}$ are better. If grey circles $\underline{\bullet}$ are shown, treat as white \underline{o} on existing units, and as black $\underline{\bullet}$ on new units.